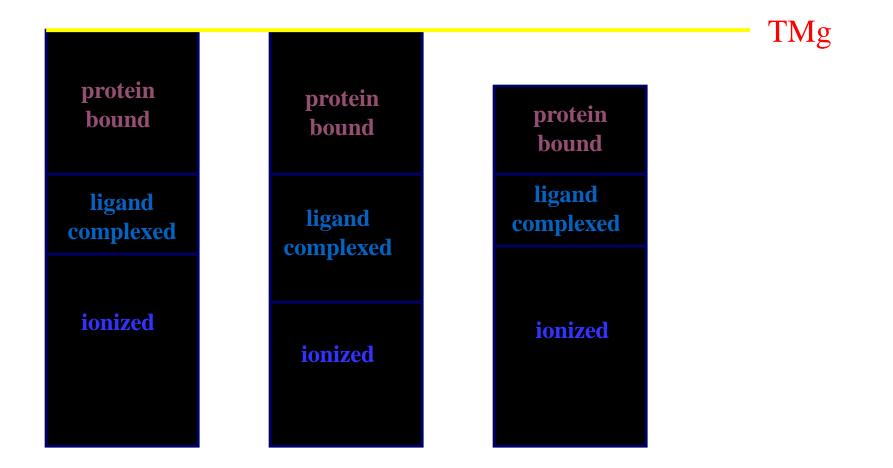

Ionized Magnesium An Essential Part of the Critical Care Profile


Key Role of Magnesium

- iMg essential for activity of >300 enzymes and many biological processes:
- •Operation of membrane Na, K, Ca pumps
- •Regulation of vascular smooth muscle tone
- •Skeletal and cardiac muscle excitability and contractility
- •Second messenger systems and signal transduction

Components of TMg

TMg v. iMg

Lack of Correlation

•CPB patients

Significantly reduced iMg levels despite increase in TMg

•Severe head trauma patients Significant decreases in iMg but not TMg

•Type 2 diabetes patients *iMg significantly reduced but not TMg*

•Critically ill children

60% had low iMg; of these, 60% had normal TMg

Lack of Correlation

•Intestinal and liver disease patients

14% were false positive with respect to functional hypomagnesemia (low TMg, normal iMg)

•Renal disease patients

20% were false positive with respect to functional hypomagnesemia

Frequency of Abnormalities

Critical Care Setting	% Patients with Abnormal Mg
Surgical ICU	49% at completion of CPB; 64% 24 hours later
Medical ICU	65% of patients with creatinine $< 1.1 \text{ mg/dL}$
	26% pediatric patients
Neonatal ICU	31% of all patients
Emergency Department	22% of all patients
	56% of patients with chest pain using diuretics
Coronary Care Unit	45.9% of patients admitted to rule out AMI
	38% of patients with unstable angina
	34% of patients with ischemic heart disease

Clinical Manifestations

Hypomagnesemia

Arrhythmias Hypertension Cardiac insufficiency Coronary vasospasm Heart failure and sudden death Decreased pressor response Digitalis sensitivity, toxicity Respiratory muscle weakness Tetany and seizures Hypokalemia Hypocalcemia

Hypermagnesemia

Hypotension Bradycardia Inhibition of platelet aggregation, clotting Respiratory paralysis Heart block Cardiac arrest

Associated Morbidity/Mortality

Critical Care Setting	Associated Morbidity and Mortality
Surgical ICU	Higher mortality rate
	Increased frequency of dysrhythmias
	Prolonged ventilatory support
Medical ICU	Increased frequency of dysrhythmias, MI,
	respiratory failure
	Higher mortality rates, more rapidly fatal course
Neonatal ICU	Increased support from mechanical ventilation
Emergency Department	Arrhythmias refractory to standard therapy
	Normal Mg required for successful resuscitation
Coronary Care Unit	Increased dysrhythmias, tachycardia, fibrillation
Medical Ward	Higher mortality rates

Associated Electrolyte Abnormalities

Electrolyte abnormality	% patients with hypomagnesemia	
Hypokalemia	38-42%	
Hypocalcemia	22-23%	
	% patients with	
Patient population	hypokalemia	
Hypomagnesemic ED	43%	
patients with chest pain		
Hypomagnesemic AMI		
patients with increased	30%	
arrhythmias		
	% patients with	
Patient population	hypocalcemia	
Hypomagnesemic patients	55%	
one day after CPB		

Danger of Hypermagnesemia

•Hypotension

•Bradycardia

•Inhibition of platelet aggregation/clotting

•Respiratory paralysis

•Heart block

•Cardiac arrest

Salem, et al., recommend serial iMg determinations during therapy to prevent hypermagnesemia. Continued monitoring at the conclusion of therapy avoids redevelopment of hypomagnesemia.

Danger of Hypermagnesemia

•The kidneys are primarily responsible for control of serum magnesium concentrations

•Essentials of Critical Care Pharmacology recommends assessing renal function prior to therapeutic use of magnesium to reduce risk of hypermagnesemia

The Problem with TMg

- •Not available as part of stat critical care panel
- •Cannot be performed on whole blood
- •Requires large sample volume
- •May be normal despite changes in iMg concentrations
- •Does not correlate with iMg concentration
- •Does not distinguish among protein-bound, ligandcomplexed, and ionized
- •May not properly identify patients at risk

Why iMg is Preferable

- •Available as part of stat critical care profile
- •Can be performed on whole blood
- •Requires small sample volume
- •Measures only physiologically active fraction
- •Effectively identifies patients at risk

Critical Citings

•Indications for measurement of magnesium include unexplained hypocalcemia and instances in which hypokalemia is unresponsive to potassium supplementation. *(Laboratory Test Handbook, Williams and Wilkins)*

•Patients with severe hypomagnesemia have a higher mortality rate than similarly ill patients with normal magnesium levels. *(Chest 93:391; Critical Care Medicine 21:203)*

•Patients with hypomagnesemia have increased frequency of ventricular dysrythmias, myocardial infarction, and respiratory failure. (Abstract, 1995 Critical Care Medicine Meeting)

Critical Citings

•Hypomagnesemia is probably the most underdiagnosed electrolyte deficiency in current medical practice. *(American Journal of Medicine 82:24)*

•Magnesium deficiency is increasingly recognized in critical care patients and may be present despite normal total serum magnesium. (Annals of Thoracic Surgery 64:572)

•Magnesium depletion alters normal cellular and end-organ physiology and predisposes patients to clinically important morbidity. *(Critical Care Clinics 7:225)* Ionized Magnesium An Essential Part of the Critical Care Profile